Организация размещения, обработки, поиска,хранения и передачи информации
ЗАПОМИНАЮЩИЕ УСТРОЙСТВА ПК
РЕГИСТРОВАЯ КЭШ-ПАМЯТЬ
Регистровая КЭШ-память — высокоскоростная память сравнительно большой емкости, являющаяся буфером между ОП и МП и позволяющая увеличить скорость выполнения операций. Создавать ее целесообразно в ПК с тактовой частотой задающего генератора 40 МГц и более. Регистры КЭШ-памяти недоступны для пользователя, отсюда и название КЭШ. (Cache), в переводе с английского означает "тайник".
В КЭШ-памяти хранятся данные, которые МП получил и будет использовать в ближайшие такты своей работы. Быстрый доступ к этим данным и позволяет сократить время выполнения очередных команд программы. При выполнении программы данные, считанные из ОП с небольшим опережением, записываются в КЭШ-память.
По принципу записи результатов различают два типа КЭШ-памяти:
КЭШ-память "с обратной записью " — результаты операций прежде, чем их записать в ОП, фиксируются в КЭШ-памяти, а затем контроллер КЭШ-памяти самостоятельно перезаписывает эти данные в ОП;
КЭШ-память "со сквозной записью" — результаты операций одновременно, параллельно записываются и в КЭШ-память, и в ОП.
Микропроцессоры начиная от МП 80486 имеют свою встроенную КЭШ-память (или КЭШ-память 1-го уровня), чем, в частности, и обусловливается их высокая производительность. Микропроцессоры Pentium и Pentium Pro имеют КЭШ-память отдельно для данных и отдельно для команд, причем если у Pentium емкость этой памяти небольшая — по 8 Кбайт, то у Pentium Pro она достигает 256-512 Кбайт.
Следует иметь в виду, что для всех МП может использоваться дополнительная КЭШ-память (КЭШ-память 2-го уровня), размещаемая на материнской плате вне МП, емкость которой может достигать нескольких мегабайтов.
Примечание. Оперативная память может строиться на микросхемах динамического (DRAM) или статического (SRAM) типа. Статический тип памяти обладает существенно более высоким быстродействием, но значительно дороже динамического. Для регистровой памяти (МПП и КЭШ-память) используются SRAM, а ОЗУ основной памяти строится на базе DRAM-микросхем.
ОСНОВНАЯ ПАМЯТЬ
Физическая структура
Основная память содержит оперативное (RAM — Random Access Memory — память с произвольным доступом) и постоянное (ROM — Read-Only Memory) запоминающие устройства.
Оперативное запоминающее устройство предназначено для хранения информации (программ и данных), непосредственно участвующей в вычислительном процессе на текущем этапе функционирования ПК.
ОЗУ — энергозависимая память: при отключении напряжения питания информация, хранящаяся в ней, теряется. Основу ОЗУ составляют большие интегральные схемы, содержащие матрицы полупроводниковых запоминающих элементов (триггеров). Запоминающие элементы расположены на пересечении вертикальных и горизонтальных шин матрицы; запись и считывание информации осуществляются подачей электрических импульсов по тем шинам матрицы, которые соединены с элементами, принадлежащими выбранной ячейке памяти.
Конструктивно элементы оперативной памяти выполняются в виде отдельных микросхем типа DIP (Dual In-line Package — двухрядное расположение выводов) или в виде модулей памяти типа SIP (Single In-line Package — однорядное расположение выводов), или, что чаще, SIMM (Single In line Memory Module — модуль памяти с одноразрядным расположением выводов). Модули SIMM имеют емкость 256 Кбайт, 1, 4, 8, 16 или 32 Мбайт, с контролем и без контроля четности хранимых битов; могут иметь 30- («короткие») и 72- («длинные») контактные разъемы, соответствующие разъемам на материнской плате компьютера. На материнскую плату можно установить несколько (четыре и более) модулей SIMM.
Постоянное запоминающее устройство также строится на основе установленных, на материнской плате модулей (кассет). Используется для хранения неизменяемой информации: загрузочных программ операционной системы, программ тестирования устройств компьютера и некоторых драйверов базовой системы ввода-вывода (BIOS — Base Input-Output System) и др. Из ПЗУ можно только считывать информацию, запись информации в ПЗУ выполняется вне ЭВМ в лабораторных условиях. Модули и кассеты ПЗУ имеют емкость, как правило, не превышающую нескольких сот килобайт. ПЗУ — энергонезависимое запоминающее устройство.
Структурно основная память состоит из миллионов отдельных ячеек памяти емкостью 1 байт каждая. Общая емкость основной памяти современных ПК обычно лежит в пределах от 1 до 32 Мбайт. Емкость ОЗУ на Один-два порядка превышает емкость ПЗУ: ПЗУ занимает 128 (реже 256) Кбайт, остальной объем — это ОЗУ.
В последние годы в некоторых ПК стали использоваться полупостоянные, перепрограммируемые запоминающие устройства — FLASH -память. Модули или карты FLASH-памяти могут устанавливаться прямо в разъемы материнской платы FLASH-память энергонезависимое запоминающее устройство.
Для перезаписи информации необходимо подать на специальный вход FLASH-памяти напряжение программирования, что исключает возможность случайного стирания информации. Перепрограммирование FLASH-памяти может выполняться непосредственно с дискеты или с клавиатуры ПК при наличии специального контроллера либо с внешнего программатора, подключаемого к ПК.
FLASH-память может быть полезной как для создания весьма быстродействующих, компактных, альтернативных НЖМД запоминающих устройств — «твердотельных дисков», так и для замены ПЗУ, хранящего программы BIOS позволяя «прямо с дискеты» обновлять и заменять эти программы на более новые версии при модернизации ПК.
Логическая структура основной памяти
Каждая ячейка памяти имеет свой уникальный (отличный от всех других) адрес. Основная память имеет для ОЗУ и ПЗУ единое адресное пространство.
Адресное пространство определяет максимально возможное количество непосредственно адресуемых ячеек основной памяти.
Адресное пространство зависит от разрядности адресных шин, ибо максимальное количество разных адресов определяется разнообразием двоичных чисел, которые можно отобразить в п разрядах, т.е. адресное пространство равно 2n, где п — разрядность адреса.
Для ПК характерно стандартное распределение непосредственно адресуемой памяти между ОЗУ, ПЗУ и функционально ориентированной информацией.
Основная память в соответствии с методами доступа и адресации делится на отдельные, иногда частично или полностью перекрывающие друг друга области, имеющие общепринятые названия. В частности, укрупнено логическая структура основной памяти ПК общей емкостью, например, 16 Мбайт.
Прежде всего, основная память компьютера делится на две логические области: непосредственно адресуемую память, занимающую первые 1024 Кбайт ячеек с адресами от 0 до1024 Кбайт – 1, и расширенную память, доступ к ячейкам которой возможен при использовании специальных программ-драйверов.
Драйвер — специальная программа, управляющая работой памяти или внешними устройствами ЭВМ и организующая обмен информацией между МП, ОП и внешними устройствами ЭВМ.
Драйвер, управляющий работой памяти, называется диспетчером памяти.
Стандартной памятью (СМА — Conventional Memory Area) называется непосредственно адресуемая память в диапазоне от 0 до 640 Кбайт.
Непосредственно адресуемая память в диапазоне адресов от 640 до 1024 Кбайт называется верхней памятью (UMA — Upper Memory Area). Верхняя память зарезервирована для памяти дисплея (видеопамяти) и постоянного запоминающего устройства. Однако обычно в ней остаются свободные участки — «окна», которые могут быть использованы при помощи диспетчера памяти в качестве оперативной памяти общего назначения.
Расширенная память — это память с адресами 1024 Кбайт и выше.
Непосредственный доступ к этой памяти возможен только в защищенном режиме работы микропроцессора.
В реальном режиме имеются два способа доступа к этой памяти, но только при использовании драйверов:
по спецификации XMS (эту память называют тогда ХМА — extended Memory Area);
по спецификации EMS (память называют, ЕМ — Expanded Memory).
Доступ к расширенной памяти согласно спецификации XMS (extended Memory Specification) организуется при использовании драйверов ХММ (extended Memory Manager). Часто эту память называют дополнительной, учитывая, что в первых моделях персональных компьютеров эта память размещалась на отдельных дополнительных платах, хотя термин Extended почти идентичен термину Expanded и более точно переводится как расширенный, увеличенный.
Спецификация EMS (Expanded Memory Specification) является более ранней. Согласно этой спецификации доступ реализуется путем отображения по мере необходимости отдельных полей Expanded Memory в определенную область верхней памяти. При этом хранится не обрабатываемая информация, а лишь адреса, обеспечивающие доступ к этой информации. Память, организуемая по спецификации EMS, носит название отображаемой, поэтому и сочетание слов Expanded Memory (EM) часто переводят как отображаемая память. Для организации отображаемой памяти необходимо воспользоваться драйвером EMM386.EXE (Expanded Memory Manager) или пакетом управления памятью QEMM.
Расширенная память может быть использована главным образом для хранения данных и некоторых программ ОС. Часто расширенную память используют для организации виртуальных (электронных) дисков.
Исключение составляет небольшая 64-Кбайтная область памяти с адресами от 1024 до 1088 Кбайт, к называемая высокая память, иногда ее называют старшая: НМА, которая может адресоваться и непосредственно при использовании драйвера HIMEM.SYS в соответствии со спецификацией XMS. НМА обычно используется для хранения программ и данных операционной системы.
В современных ПК существует режим виртуальной адресации (virtual — кажущийся, воображаемый). Виртуальная адресация используется для увеличения предоставляемой программам оперативной памяти за счет отображения в части адресного пространства фрагмента внешней памяти.
ВНЕШНЯЯ ПАМЯТЬ
Устройства внешней памяти или, иначе, внешние запоминающие устройства весьма разнообразны. Их можно классифицировать по целому ряду признаков: по виду носителя, типу конструкции, по принципу записи и считывания информации, методу доступа и т.д.
Носитель — материальный объект, способный хранить информацию.
В зависимости от типа носителя все ВЗУ можно подразделить на накопители на магнитной ленте и дисковые накопители.
Накопители на магнитной ленте, в свою очередь, бывают двух видов:
накопители на бобинной магнитной ленте (НБМЛ);
накопители на кассетной магнитной ленте (НКМЛ — стриммеры). В ПК используются только стриммеры.
Диски относятся к машинным носителям информации с прямым доступом. Понятие прямой доступ означает, что ПК может "обратиться" к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию, непосредственно, где бы ни находилась головка записи/чтения накопителя.
Накопители на дисках более разнообразны.
накопители на гибких магнитных дисках (НГМД), иначе, на флоппи-дисках или на дискетах;
накопители на жестких магнитных дисках (НЖМД) типа "винчестер";
накопители на сменных жестких магнитных дисках, использующие эффект Бернулли;
накопители на флоптических дисках, иначе, floptical-накопители;
накопители сверхвысокой плотности записи, иначе, VHD-накопители;
накопители на оптических компакт-дисках CD-ROM (Compact Disk ROM);
накопители на оптических дисках типа СС WORM (однократная запись — многократное чтение);
накопители на магнитооптических дисках (НМОД) и др.
Логическая структура диска
Магнитные диски (МД) относятся к магнитным машинным носителям информации. В качестве запоминающей среды у них используются магнитные материалы со специальными свойствами (с прямоугольной петлей гистерезиса), позволяющими фиксировать два магнитных состояния — два направления намагниченности. Каждому из этих состояний ставятся в соответствие двоичные цифры: 0 и 1. Накопители на МД (НМД) являются наиболее распространенными внешними запоминающими устройствами в ПК. Диски бывают жесткими и гибкими, сменными и встроенными в ПК. Устройство для чтения и записи информации на магнитном диске называется дисководом.
Все диски: и магнитные, и оптические характеризуются своим диаметром или, иначе, форм-фактором.
Информация на МД записывается и считывается магнитными головками вдоль концентрических окружностей — дорожек (треков). Количество дорожек на МД и их информационная емкость зависят от типа МД, конструкции накопителя на МД, качества магнитных головок и магнитного покрытия.
Каждая дорожка МД разбита на сектора. В одном секторе дорожки может быть помещено 128, 256, 512 или 1024 байт, но обычно 512 байт данных. Обмен данными между НМД и ОП осуществляется последовательно целым числом секторов. К л a cm ер — это минимальная единица размещения информации на диске, состоящая из одного или нескольких смежных секторов дорожки.
При записи и чтении информации МД вращается вокруг своей оси, а механизм управления магнитной головкой подводит ее к дорожке, выбранной для записи или чтения информации.
Данные на дисках хранятся в файлах, которые обычно отождествляют с участком (областью, полем) памяти на этих носителях информации.
Файл — это именованная область внешней памяти, выделенная для хранения массива данных.
Поле памяти создаваемому файлу выделяется кратным определенному количеству кластеров. Кластеры, выделяемые одному файлу, могут находиться в любом свободном месте дисковой памяти и необязательно являются смежными. Файлы, хранящиеся в разбросанных по диску кластерах, называются фрагментированными.
Для пакетов магнитных дисков (диски установлены на одной оси) и для двухсторонних дисков вводится понятие "цилиндр". Цилиндром называется совокупность дорожек МД, находящихся на одинаковом расстоянии от его центра.
Накопители на гибких магнитных дисках
На гибком магнитном диске (дискете) магнитный слой наносится на гибкую основу. Используемые в ПК ГМД имеют форм-фактор 5,25" и 3,5". Емкость ГМД колеблется в пределах от 180 Кбайт до 2,88 Мбайт. ГМД диаметром 5,25 дюйма помещается в плотный гибкий конверт, а диаметром 3,5 дюйма — в пластмассовую кассету для защиты от пыли и механических повреждений.
Конструктивно дискета диаметром 133 мм изготовляется из гибкого пластика (лавсана), покрытого износоустойчивым ферролаком, и помещается в футляр-конверт. Дискета имеет две прорези: центральное отверстие для соединения с дисководом и смещенное от «центра небольшое отверстие (обычно скрытое футляром), определяющее радиус-вектор начала всех дорожек на ГМД. Футляр также имеет несколько прорезей: центральное отверстие, чуть большее, чем отверстие на дискете; широкое окно для считывающих и записывающих магнитных головок и боковую прорезь в виде прямоугольника, закрытие которой липкой лентой, например, защищает дискету от записи и стирания информации.
Дискета диаметром 89 мм имеет более жесткую конструкцию, более тщательно защищена от внешних воздействий, но в принципе имеет примерно те же конструктивные элементы. Режим запрета записи на этих дискетах устанавливается специальным переключателем, расположенным в одном из углов дискеты.
В последние годы появились дискеты с тефлоновым покрытием, которое предохраняет магнитное покрытие и записанную на нем информацию от грязи, пыли, воды, жира, отпечатков пальцев и даже от растворителей типа ацетона. Они также обладают стойкостью к различным внешним воздействиям: температуре, влажности, запыленности.
Каждую новую дискету в начале работы с ней следует отформатировать.
Форматирование дискеты — это создание структуры записи информации на ее поверхности: разметка дорожек, секторов, записи маркеров и другой служебной информации.
Накопители на жестких магнитных дисках
Первый накопитель на жестких дисках (Hard Disk Drive – HDD) был создан в 1973г. по технологии фирмы IBM и имел кадровое обозначение «30/30» (двухсторонний диск емкостью 30+30 Мбайт), которое совпало с названием известного охотничьего ружья «винчестер», использующегося при завоевании дикого запада. По этой причине накопители на жестких дисках получили название винчестер.
По сравнению с дискетами HDD обладают такими преимуществами: значительно большая емкость и время доступа для HDD. Оно на порядок меньше, чем для приводов дискет.
Конструкция и принцип действия
Несмотря на большое разнообразие моделей винчестеров принципы их действия и основные конструктивные элементы одинаковы. Основные элементы конструкции накопителя на жестком диске:
• магнитные диски;
• головки чтения/ записи;
• механизм привода головок;
• двигатель привода дисков;
• печатная плата с электронной схемой управления.
Типовой накопитель состоит из герметичного корпуса (гермоблока) и платы электронного блока. В гермоблоке размещены все механические части, на плате – вся управляющая электроника. Внутри гермоблока установлен шпиндель с одним или несколькими магнитными дисками. Под ним расположен двигатель. Ближе к разъемам, с левой или правой стороны от шпинделя находиться поворотный позиционер магнитных головок . Позиционер соединен с печатной платой гибким ленточным кабелем (иногда одножильными проводами).
Гермоблок заполняется воздухом под давлением в одну атмосферу. В крышках гермоблоков некоторых винчестеров имеется специальное отверстие, заклеенное фильтрующей пленкой, которая служит для выравнивания давления внутри блока и снаружи, а также для поглощения пыли.
Магнитные диски выпускаются следующих размеров: 3.5”; 5.25”; 2.5”; 1.8”. Диски покрываются магнитным веществом – рабочим слоем. Он может быть либо оксидный (полимерное покрытие с наполнением из окиси железа), либо на основе тонких пленке (имеет меньшую толщину и более прочен, качество его гораздо выше).
Головки чтения/записи предусмотрены для каждой стороны диска. Когда накопитель включен, головки касаются диска.
Механизм привода головок обеспечивает перемещение головок от центра дисков к краям и фактически определяет надежность накопителя, его температурную стабильность и вибрационную устойчивость.
Современные диски имеют функцию автоматической парковки, т.е. при включении и выключении ПК головки устанавливаются по мере необходимости на определенный, чаще всего последний цилиндр. При парковке головки автоматически блокируется, и их дальнейшая работа не возможна.
Двигатель привода дисков приводит пакет дисков во вращение, скорость которого в зависимости в пределах 3600-7200 об/мин. Жесткий диск вращается непрерывно и должен быть установлен только вертикально или горизонтально.
Печатная плата с электронной схемой управления и прочие узлы накопителя являются съемными. На печатной плате монтируются электронные схемы управления двигателем и приводом головок, схема для обмена данными с контроллером.
Накопители на компакт-дисках
Для решения широкого круга задач информатизации используются следующие оптические накопители информации:
• CD-ROM (Compact Disk Read-Only Memory) — запоминающие
устройства только для считывания с них информации;
• CD-WORM {Writ Once Read Many) — запоминающие устройства для считывания и однократной записи информации;
• CD-RW(CD-Recordable) — запоминающие устройства для считывания и многократной записи информации;
• МО — магнитооптические накопители, на которые возможна многократная запись.
Принцип действия всех оптических накопителей информации основан на лазерной технологии. Луч лазера используется как для записи на носитель информации, так и для считывания ранее записанных данных, и является, по сути, дела своеобразным носителем информации.
Приводы CD-ROM
CD-ROM — компакт-диск (CD), предназначенный для хранения в цифровом виде предварительно записанной на него информации и считывания ее с помощью специального устройства, называемого CD-ROM-driver, — дисковода для чтения компакт-дисков.
К числу задач, для решения которых предназначается устройство CD-ROM, можно отнести: установку и обновление программного обеспечения; поиск информации в базах данных; запуск и работу с игровыми и образовательными программами; просмотр видеофильмов; прослушивание музыкальных CD.
Хранение данных на CD-дисках, как и на магнитных дисках, организуется в двоичной форме.
По сравнению с винчестерами CD значительно надежнее в транспортировке. Объем данных, располагаемых на CD, достигает 700 — 800 Мбайт, причем при соблюдении правил эксплуатации CD практически не изнашивается.
Привод CD-ROM содержит следующие основные функциональные узлы:
• загрузочное устройство;
• оптико-механический блок;
• системы управления приводом и автоматического регулирования;
• универсальный декодер и интерфейсный блок.
CD-ROM работает следующим образом. Электромеханический привод приводит во вращение диск, помещенный в загрузочное устройство. Оптико-механический блок обеспечивает перемещение оптико-механической головки считывания по радиусу диска и считывание информации. Полупроводниковый лазер генерирует маломощный инфракрасный луч (типовая длина волны 780 нм, мощность излучения 0,2 — 5,0 мВт), который попадает на разделительную призму, отражается от зеркала и фокусируется линзой на поверхности диска. Серводвигатель по командам, поступающим от встроенного микропроцессора, перемещает подвижную каретку с отражающим зеркалом к нужной дорожке на компакт-диске. Отраженный от диска луч фокусируется линзой, расположенной под диском, отражается от зеркала и попадает на разделительную призму, которая направляет луч на вторую фокусирующую линзу. Далее луч попадает на фотодатчик, преобразующий световую энергию в электрические импульсы. Сигналы с фотодатчика поступают на универсальный декодер.
< Назад Вперед >
|